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ULTRASONIC TECHNIQUE FOR DETECTION AND 

MEASUREMENT OF FATIGUE CRACKS 

by Stanley J. K l i m a ,  Daniel J. Lesco, and John C. Freche 

Lewis Research Center 

An u l t r a  onic system w a s  developed and used t o  observe t h e  formation of 
f a t igue  cracks i n  center-notched sheet specimens of unalloyed aluminum, two 
aluminum al loys,  a mild s t e e l  (approx 0.035 percent carbon), and a nickel-base 
al loy.  The r e f l e c t i o n  technique was used t o  de t ec t  minute fa t igue  cracks. The 
through-transmission technique w a s  used t o  a l imi t ed  ex ten t  t o  measure r e l a -  
t i v e l y  long cracks. Actual lengths  of detected cracks were determined by micro- 
scopic examination. S t r e s s - l i f e  (S-N) curves of l i f e  t o  i n i t i a l  de tec tab le  
cracks as wel l  as S-N curves of l i f e  t o  f r a c t u r e  were obtained. 

The r e f l e c t i o n  technique w a s  used while t he  t e s t  w a s  i n  progress t o  de t ec t  
f a t igue  cracks t h a t  ranged i n  length  approximately from 0.0005 t o  0.005 inch 
f o r  unalloyed aluminum, m i l d  s tee l ,  and Inconel ana from 0.0005 t o  0.0025 inch 
f o r  6061-T6 and 2014-T6 aluminum al loys.  I n  t h e  sharply notched specimens u t i -  
l i z e d  i n  t h i s  invest igat ion,  cracks were de tec ted  wi th in  approximately 1 t o  3 
percent of t o t a l  specimen l i f e  f o r  a l l  t h e  mater ia l s  over t he  range of s t r e s s e s  
cons idere  d. 

It w a s  possible  t o  de tec t  smaller cracks with the  r e f l e c t i o n  technique than 
with t h e  through-transmission technique. The instrument output from cracks 
longer than approximately 0.010 inch, however, w a s  more reproducible when the  
through-transmission technique was used. 

The e f f e c t s  of crack o r i en ta t ion  on ins-trument output with t h e  r e f l e c t i o n  
technique w a s  s tudied by means of s l o t s  machined i n t o  f l a t  p la tes .  S l o t  sur- 
faces  normal t o  t h e  d i r ec t ion  of  t he  u l t r a son ic  waves produced t h e  g r e a t e s t  vol-  

direct ion,  t he  smaller t h e  output became, even though t h e  s l o t  surface area when 
projected on a plane normal t o  t h e  wave d i r ec t ion  w a s  constant.  

b tage output. The f a r t h e r  t h e  s l o t  deviated from a pos i t i on  normal t o  t h e  wave 

b 

INTRODUCTION 

Fatigue involves t h e  processes of crack i n i t i a t i o n  and crack propagation 
p r i o r  t o  f r ac tu re .  
nondestructively during the course of a f a t igue  t e s t  would be extremely use- 
f u l  as a research too l .  If t h e  method could a l s o  be successful ly  appl ied i n  

Any method that can be used t o  de t ec t  small f a t igue  cracks 
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t h e  f i e l d ,  i t s  usefulness would be even grea te r .  

Methods a r e  present ly  ava i lab le  t h a t  can be used t o  de tec t  f a t igue  cracks, 
bu t  general ly  speaking, each has associated d i f f i c u l t i e s ,  more or l e s s  severe, 
depending on the  intended appl icat ion.  For example, commonly used inspect ion 
methods such as penetrat ing-l iquid,  magnetic-particle,  and radiographic tech- 
niques, when appl ied t o  f a t i g u e  specimens, a l l  requi re  in t e r rup t ion  of t h e  fa- 
t i gue  t e s t .  Additional l imi t a t ions  e x i s t  because the  penetrat ing-l iquid and 
magnetic-particle techniques can only be used t o  de tec t  cracks a t  or near the  
surface, and the  use of X-ray techniques poses problems of s a fe ty  and i n t e r -  
pretat ion.  

Optical  microscopy, another obvious technique, requi res  highly polished 
surfaces and general ly  involves the  terminat ion of t he  t e s t  and the  sect ioning 
of the  specimens p r i o r  t o  microscopic examination. Test ing many specimens f o r  
d i f fe ren t  time i n t e r v a l s  makes it possible  t o  determine when extremely s m a l l  
cracks have formed. Such a procedure i s .bo th  expensive and very time consuming. 
A recent  refinement of t h i s  procedure ( r e f .  1) involves t h e  production of rep- 
l i c a s  of t he  specimen surface su i t ab le  f o r  use i n  e i t h e r  t he  e lec t ron  or t he  
l i g h t  microscope. P l a s t i c  r e p l i c a s  were obtained while t he  specimens remained 
i n  the  fa t igue  machine by simply stopping the  t e s t  per iodica l ly .  From these  
rep l icas ,  cracks l e s s  than 0.0001 inch deep were detected i n  f lexure  specimens 
a f t e r  r e l a t i v e l y  few load  applications;  however, de tec t ion  of cracks by t h i s  
method requi res  highly polished specimens and s t i l l  involves lengthy procedures. 

I n  an attempt t o  de tec t  f a t igue  cracks more simply and without in te r rup-  
t i o n  of t he  t e s t ,  e l e c t r i c a l  and u l t rasonic  methods have recent ly  been i n t r o -  
duced. These techniques are not as sens i t i ve  f o r  de tec t ing  extremely small 
cracks as the  microscope but  they have p r a c t i c a l  advantages because they gener- 
a l l y  can be more e a s i l y  applied.  An e l e c t r i c  p o t e n t i a l  technique has been used 
t o  determine slow crack growth i n  t e n s i l e  t e s t s  ( r e f s .  2 and 3). The f e a s i b i l -  
i t y  of crack de tec t ion  by e l e c t r i c a l  impedance measurements has a l so  been dem- 
ons t ra ted  (refs. 4 and 5) .  Changes i n  the  e l e c t r i c a l  r e s i s t ance  of notched 
rotating-beam-type specimens ( r e f .  4 )  were cor re la ted  with depth of f a t igue  
cracks. The smallest  cracks t h a t  could be detected with ce r t a in ty  were on the  
order of 0.005 inch i n  depth. 

Ultrasonic  methods, which have been widely used f o r  nondestructive inspec- 
t i o n  purposes, have r ecen t ly  been used t o  observe damage i n  fa t igue  specimens. 
Ultrasonic  surface waves have been used ( r e f .  6 )  t o  de t ec t  surface flaws i n  
bending fa t igue  specimens, but  crack s i zes  were not determined i n  t h i s  study. 
Very recently,  u l t r a son ic  inspect ion techniques were used ( r e f .  7 )  t o  de tec t  
cracks i n  t h i n  (0.039 i n . )  center-notched s t e e l  sheet specimens t h a t  were 
t e s t e d  i n  axial  fa t igue .  Cracks ranging from 0.003 t o  0.004 inch i n  length 
were detected.  

O f  t he  methods described, t he  u l t rasonic  method was se lec ted  f o r  f u r t h e r  
study i n  t he  present inves t iga t ion .  
because it w a s  not l imi t ed  t o  the  de tec t ion  of surface cracks, d id  not require  
the  in t e r rup t ion  of t h e  f a t igue  test, and could be used with many mater ia ls  
regardless  of t h e i r  e l e c t r i c a l  o r  magnetic propert ies .  Also, t h i s  method does 

This method afforded c e r t a i n  advantages 
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not require  t h a t  specimens be insu la ted  from the  t e s t  apparatus as i s  necessary 
f o r  t h e  e l e c t r i c a l  methods,. A program w a s  therefore  i n i t i a t e d  a t  the  NASA 
Lewis Research Center t o  f u r t h e r  develop the  u l t r a son ic  method and t o  apply it 
t o  f a t igue  t e s t i n g  of various mater ia ls .  Axial t e n s i l e  f a t igue  tes ts  were run 
with center-notched sheet specimens of unalloyed aluminum, two aluminum al loys,  
a mild s tee l ,  and a nickel-base alloy. S t r e s s - l i f e  (S-N) curves based on l i f e  
t o  i n i t i a l  de tec tab le  cracks as wel l  as S-fi curves of l i f e  t o  f r a c t u r e  were ob- 
tained. Metallographic s tud ies  were made t o  measure a c t u a l  lengths  of t he  de- 
t e c t e d  cracks. 

DEVELOPMENT OF ULTWONIC FATIGUE-CMCK-DETECTION SYSTEM 

Pr inc ip les  of Ultrasonic  Crack Detection 

The p r inc ip l e s  of u l t rasonic  wave propagation can be found i n  references 8 
t o  10. A b r i e f  review of t he  theory involved, a descr ip t ion  of t he  crack- 
de tec t ion  system, and the  manner of i t s  appl ica t ion  a re  presented i n  the  follow- 
ing sections.  

Fatigue-crack de tec t ion  by r e f l e c t i o n  technique. - Detection of f a t igue  
cracks by the  r e f l e c t i o n  of u l t r a son ic  energy i s  s i m i l a r  t o  t he  use of radar  i n  
the  de tec t ion  of d i s t a n t  objects .  Acoustic energy, i n  the  form of pulsed enve- 
lopes of high-frequency waves, i s  t ransmi t ted  from a transducer i n t o  the  t e s t  
specimen. Af te r  t h e  pulse i s  transmitted,  t he  transducer a c t s  as a rece iver  f o r  
energy r e f l e c t e d  from any d iscont inui ty  i n  the  specimen. The metal-air  i n t e r -  
face  of a f a t igue  crack cons t i t u t e s  such a discont inui ty .  The low dens i ty  of 
a i r  and the  r e l a t i v e l y  low veloc i ty  of u l t r a son ic  waves i n  a i r  r e s u l t  i n  an 
acoust ic  mismatch t h a t  causes the  r e f l e c t i o n  of inc ident  u l t r a son ic  waves. The 
amount of energy r e f l e c t e d  from a crack i s  d i r e c t l y  r e l a t e d  t o  the  crack area, 
t he  i n t e n s i t y  of t h e  inc ident  u l t rasonic  wave, and the  o r i en ta t ion  of t he  crack. 

Fatigue-crack de tec t ion  by through-transmission technique. - A second tech- 
nique f o r  the- de tec t ion  of d i scon t inu i t i e s  by means of u l t rasonic  energy does 
not depend on the  measurement of r e f l e c t e d  energy. It employs two transducers:  
one a c t s  as a t ransmi t te r ,  t he  other  as a receiver .  The p r inc ip l e  of operat ion 
i s  based on the  f a c t ' t h a t  a crack i n  the  region of t he  specimen between the  
transducers w i l l  decrease the  energy t ransmi t ted  t o  the  receiver .  The amount of 
energy received i s  inverse ly  r e l a t e d  t o  t h e  crack area.  

> A l i m i t  on the  s i ze  of t he  smallest  crack t h a t  can be detected with t h i s  
technique i s  imposed by the  requirement t h a t  a very s m a l l  change i n  an i n i t i a l l y  
l a rge  s igna l  must be measured. Under these  conditions, s m a l l  changes can be 
d i f f i c u l t  t o  resolve.  

System Design 

A block diagram of the  u l t r a son ic  crack-detection system i s  shown i n  f i g -  
ure 1. 
The commercial un i t  contained a pulse generator  t o  dr ive  the  p i ezoe lec t r i c  

A commercial u l t r a son ic  f l a w  de tec tor  w a s  used i n  t h i s  inves t iga t ion .  

3 



I 

I 
Specimen 

r Specimen and two 
1 transducers for 

r Flaw detector 

I 
I 
I 

Cathcde- 
Ampli f ier = ray tube  I 

r -  - 

I/  

I '  - 

th rough-transmission ' 
technique 

1 I 
I ! I I 

I I 

Pulse Integrator 

Figure 2. - Commercial flaw detector and test specimens wi th  attached transducers. 

crys ta l .  
t h a t  amplified and displayed the  r e f l ec t ed  energy pat tern,  and time gat ing and 
in tegra tor  c i r cu i t ry .  
graph was used t o  obtain a permanent record of t he  s igna l  r e f l ec t ed  from the  
notch o r  crack i n  the  specimen. The commercial transducer w a s  modified t o  per- 
m i t  i t s  appl icat ion t o  the  detect ion of fa t igue  cracks i n  notched-sheet speci- 
mens. A photograph of t h e  commercial f l a w  de tec tor  and specimens with attached 
transducers f o r  use with the  r e f l e c t i o n  and through-transmission techniques i s  
shown i n  f igu re  2. 

It a l so  contained the  necessary amplif iers  and a cathode-ray tube 

A f i l t e r  and an osci l lograph were added. The osc i l l o -  

Transducer . generator 7 Time gate = c i r cu i t r y  i 1 Fil ter 

Ultrasonic transducer design. - Figure 3 shows a sketch of the  transducer 
designs used with t h e  crack-detection device. The transducer used with the  

Oscillograph 
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Piezoelectric 
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drive 
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waves (from 

specimen-transducer 
interface) 

Specimen-, 

s 
I / j-'. 

I ,, o.25,, Crack Incident waves 

i 
I Reflected waves Transmitted waves-. (from 

(a) Transducer used with reflection technique. 

Transmitting transducer - 

i f  
Incident waves ; ,-Crack '.-Transmitted 

Reflected waveA wave 

(b) Transducers used with through-transmission technique. 

Figure 3. - Schematic diagram of ultrasonic transducers used with crack-detection device. 

r e f l e c t i o n  technique consis ted of a l u c i t e  wedge on which were mounted two p i -  
ezoe lec t r ic  c r y s t a l s  ( f i g .  3 ( a ) ) .  A rectangular (1.0 by 0.5 i n . )  piezoelec- 
t r i c  c r y s t a l  w a s  used t o  generate u l t rasonic  waves of f ixed  frequency and t o  
receive the  r e f l ec t ed  signals.  
fa t igue  specimens permitted the  t e s t  sect ion t o  be flooded with shear ( t r ans -  
verse)  waves. The d i r ec t ion  of v ibra t ion  i n  shear waves i s  t ransverse t o  the  
d i rec t ion  of wave propagation. 

U t i l i za t ion  of t h i s  transducer design with sheet 

The shear-wave mode w a s  used because it permitted u l t rasonic  energy t o  be 
t ransmit ted through the  specimen surface and subsequently t o  be propagated along 
the  length of t h e  specimen. 
of t he  longi tudinal  waves. 
of t he  decreased wavelength associated with the  shear wave. 

Also, t h e  ve loc i ty  of shear waves i s  one-half t h a t  
This permitted detect ion of smaller flaws because 

The wave mode and t h e  angle of en t ry  of t h e  u l t rasonic  waves i n t o  t h e  t e s t  
0 and t h e  r e f r ac t ion  of t h e  inc i -  
It was necessary t h a t  t h e  wedge 

specimen were cont ro l led  by t h e  wedge angle 
dent waves a t  the  wedge-specimen in te r face .  
mater ia l  have an acous t ica l  propagation ve loc i ty  l e s s  than the  shear wave veloc- 
i t y  i n  the  specimen mater ia ls .  Lucite p l a s t i c  possessed the  required ve loc i ty  
charac te r i s t ic .  The optimum wedge angle 0 w a s  experimentally determined f o r  
each f a t igue  specimen mater ia l  by the  method of reference 11. 
summarized i n  t a b l e  I. 

These da ta  are 

It w a s  a l so  necessary t o  provide a coupling medium between t h e  wedge and 
the  f a t igue  specimen t o  e l iminate  a i r  from t h e  in t e r f ace  and t o  allow the  t rans-  
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TABLE I. - WEDGE ANGLE FOR MAxlMUM mission of t h e  u l t r a son ic  waves i n t o  t h e  speci-  

2014-T6 Aluminum 

6061-T6 Aluminum 

1100 Aluminum 

Mild steel 

Inconel 

ULTRASONIC SHEAR WAVE AMPLITUDE 

IN SPEClMEN MATERIALS 

0.060 53.5 

.064 53.5 

.064 53.5 

.053 46.0 

46.0 .046 
~ ~~~ 

- 

men. The coupling medium must have an acoust i -  
c a l  impedance similar t o  t h a t  of the  wedge and 
the  specimen and be s u f f i c i e n t l y  f l u i d  t o  f i l l  
a l l  a i r  pockets. Because changes i n  thickness  
of t h e  coupling l a y e r  would a f f e c t  t he  amount 
of energy t ransmi t ted  t o  t h e  specimen, a f l u i d  
t h a t  would tend  t o  r e t a i n  i t s  consistency dur- 
ing the  t e s t  w a s  required.  The coupling mate- 
r i a l  used i n  t h i s  inves t iga t ion  w a s  a molyb- 
denum disulphide lub r i can t  normally used t o  
prevent seizure of mating p a r t s  a t  high temper- 
a ture .  Other coupling mater ia ls ,  an epoyy type 
bonding agent f o r  example, provided good t r ans -  
mission p r i o r  t o  t e s t ing ,  but  t he  bond quickly 
f a i l e d  i n  f a t i g u e  because the  transducer w a s  
posi t ioned on a s t r e s sed  a rea  of t he  specimen. 

Although a r a t h e r  high degree of coupling e f f i c i ency  was a t t a ined  with the  
molybdenum disulphide lubr icant ,  not a l l  of t he  u l t r a son ic  energy generated i n  
t h e  wedge by the  dr ive c r y s t a l  was t ransmi t ted  t o  the  specimen because of the  
d iscont inui ty  a t  the  wedge-specimen in te r face .  The energy t h a t  did not en te r  
t he  specimen was r e f l e c t e d  back i n t o  t h e  wedge as shown i n  f igu re  3(a) .  Changes 
i n  the  i n t e n s i t y  of these  r e f l e c t e d  waves during the  course of a t e s t  were in-  
d i ca t ive  of changes i n  coupling eff ic iency.  
monitor c r y s t a l )  was mounted on the  o ther  end of t h e  wedge t o  monitor these  
changes. This c r y s t a l  w a s  used only as a rece iver  and was manually switched t o  
the  amplif ier  input  a t  in t e rva l s .  I n  general, t he  changes i n  the  i n t e n s i t y  of 
t h e  r e f l e c t e d  waves detected by t h i s  c r y s t a l  were s m a l l .  The dis tance from the  
wedge-specimen in t e r f ace  t o  the  coupling monitor c r y s t a l  was such t h a t  energy 
r e f l e c t e d  from the  wedge-monitor c r y s t a l  i n t e r f ace  reached t h e  dr ive c r y s t a l  
wel l  a f t e r  any r e f l e c t i o n s  from the  cracks within the  specimen were received. 
This insured t h a t  intrawedge r e f l e c t i o n s  would not be in t e rp re t ed  a s  specimen 
cracking. 

An add i t iona l  c r y s t a l  (coupling 

When the  through-transmission technique w a s  used, two t ransducers  were 
needed: 
3 ( b ) ) .  As  may be seen from t h e  f igure,  some of t he  u l t r a son ic  waves introduced 
t o  the  specimen pass through it and a r e  detected by the  receiving transducer. 
Some of the  waves a re  r e f l e c t e d  from t h e  crack (dot ted  arrow) and a r e  therefore  
not detected by t h e  receiving transducer.  Space l imi t a t ions  precluded the  use 
of coupling monitor c r y s t a l s  when t h i s  technique w a s  u t i l i z e d .  The coupling 
e f f ic iency  was assumed t o  remain e s s e n t i a l l y  constant. 

one t o  t ransmit  u l t r a son ic  waves, t h e  o ther  t o  receive them ( f i g .  

Special  t ransducer  c h a r a c t e r i s t i c s  and t h e i r  r e l a t i o n  t o  transducer de- - 
sign. - Although l u c i t e  has acous t ica l  p roper t ies  su i t ab le  f o r  providing wave 
r e f r ac t ion  and i s  r ead i ly  machinable, it has a l i m i t a t i o n  i n  t h a t  a t tenuat ion  
of u l t rasonic  waves i n  t h i s  medium i s  much g r e a t e r  than it i s  i n  metals. Thus 
a l imi t a t ion  w a s  imposed on t h e  maximum frequency t h a t  could be used because 
a t tenuat ion  of u l t rasonic  energy a t  higher frequencies i s  much g rea t e r  than it 
i s  a t  low frequencies.  

- 

The higher t he  wave frequency ( shor t e r  wavelength), 
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however, t he  smaller the  f l a w  t h a t  can be 
detected. Consequently, a c r y s t a l  w a s  
chosen t h a t  had as high a frequency as 
possible  without encountering excessive 
u l t r a son ic  wave a t tenuat ion  i n  t h e  wedge. 
It was experimentally determined t h a t  a 
frequency of 5 megacycles w a s  t he  p r a c t i -  
c a l  maximum with t h e  ava i lab le  equipment. 

Comparisons made of severa l  5- 
megacycle, 1.0- by 0.5-inch c r y s t a l s  d i s -  
closed va r i a t ions  i n  t h e i r  response t o  t h e  
presence of flaws. I n  order t o  obtain re -  
p e a t a b i l i t y  i n  t h e  experiments, t h e  cry- 
stals were not interchanged. 

-. M -. 25 0 .25 .M 
Flaw position relative to transducer centerline, in. Plo t s  were a l s o  made of t h e  vari- 

Figure 4. - Variations in sensitivity across typical l - i n c h  ations in sensitivity to 
transducer. Distance from flaw, 0.25 inch. across  the  long dimension of each c rys t a l .  

Variat ions were determined by measuring 
t h e  r e f l ec t ed  energy from a 0.050-inch-long s l o t  i n  an aluminum a l loy  sheet as 
the  transducer w a s  moved l a t e r a l l y  pas t  the  s l o t .  Measurements were taken a t  
i n t e r v a l s  of approximately 0.06 inch. A p l o t  showing the  va r i a t ion  i n  sensi-  
t i v i t y  f o r  t he  1.0-inch c r y s t a l  used i n  t h i s  inves t iga t ion  i s  shown i n  f igu re  4. 
The c r y s t a l  w a s  mounted on a 53.5' wedge, and measurements were made a t  a d i s -  
tance of 0.25 inch from t h e  f l a w .  The general  shape of the  curve i s  t y p i c a l  of 
a l l  t he  c r y s t a l s  checked. 
zone" e f f ec t s .  When the  r e f l e c t i n g  surface l i e s  within an a rea  very near t he  
transducer (near-zone), in te r fe rence  pa t t e rns  can cause maximums and minimums 
i n  the  energy received a t  t h e  c r y s t a l  as a funct ion of f l a w  locat ion.  
dis tance from c r y s t a l  t o  f l a w  was r e l a t i v e l y  l a rge  (approx 3 in.  ), only a s ingle  
s e n s i t i v i t y  peak w a s  observed. 

The cen t r a l  va r i a t ions  can be a t t r i b u t e d  t o  "near 

When the  

After  t he  region of maximum s e n s i t i v i t y  of t he  transducer w a s  determined, 
t he  transducer was subsequently mounted on fa t igue  specimens t o  u t i l i z e  t h i s  
region t o  advantage. Despite t he  near-zone s e n s i t i v i t y  pat terns ,  t he  pos i t ion-  
ing of the  t ransducer  approximately 1 /4  inch from the  t e s t  sect ion of t he  speci-  
men provided optimum crack measurement s e n s i t i v i t y  because wave a t tenuat ion  and 
dispers ion were minimized. 

0perat.io.n- of. system e lec t ronics .  - Ultrasonic  pulses  were t ransmi t ted  a t  
t h e  r a t e  of 500 per  second with a pulse time of about 1 microsecond. Since a 
t y p i c a l  ve loc i ty  f o r  u l t r a son ic  shear waves i n  the  specimens used i n  t h i s  i n -  
ves t iga t ion  was about 0 .1  inch per  microsecond, s u f f i c i e n t  time w a s  provided 
between pulses  f o r  a l l  r e f l e c t e d  s igna ls  t o  r e t u r n  t o  the  dr ive c r y s t a l  when 
t h e  r e f l e c t i o n  technique w a s  employed. 
specimen would r e tu rn  t o  t h e  dr ive  c r y s t a l  a f t e r  r e f l e c t i o n s  from f l a w s  i n  t he  
t e s t  sect ion had been received. These r e f l e c t e d  pulses  were reconverted t o  
e l e c t r i c a l  s igna ls  by t h e  dr ive  c rys ta l ,  amplified, and displayed on t h e  
cathode-ray tube. 

A r e f l e c t i o n  s igna l  f r o m t h e  end of the 
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When the  through-transmission technique w a s  employed, only t h a t  po r t ion .o f  
t h e  u l t rasonic  pulse which was not r e f l e c t e d  by specimen d i scon t inu i t i e s  w a s  
received by the  receiving transducer.  
tween pulses f o r  t h e  r e f l e c t e d  s igna ls  t o  r e t u r n  t o  t h e  c rys t a l .  

It was not necessary t o  allow time be- 

The commercial u l t r a son ic  equipment included a time ga te  and in t eg ra to r  
c i r c u i t r y  ( f ig .  1, p. 4). The ga te  allowed only t h e  r e f l e c t e d  (or t ransmi t ted)  
s igna l s  occurring within a preselected t i m e  i n t e r v a l  after each t ransmi t ted  
pulse t o  pass through t o  t h e  in t eg ra to r  c i r c u i t r y .  Since the  dis tance +,raveled 
by an u l t rasonic  pulse i s  proport ional  t o  time, t h e  time ga te  may be i n t e r -  
preted as a "propagation-distance" gate. 
f o r e  gated f o r  t he  specimen pos i t ion  at which f a t i g u e  cracking was expected t o  
occur when the  ref lect ion-technique was used. Extraneous r e f l e c t i o n s  from t h e  
transducer-specimen in t e r f ace  and r e f l e c t i o n s  from the  end of the  specimen were 
blocked by t h i s  gate.  With the  'through-transmission technique the  ampl i f ie r  
w a s  gated f o r  t h e  time a t  which t h e  t ransmi t ted  pulse  reached the  receiver .  

The output of t h e  amplif ier  was there-  

The in t eg ra to r  c i r c u i t r y  provided a de ( d i r e c t  cur ren t )  voltage l e v e l  pro- 
p o r t i o n a l t o  the  s igna l  t h a t  passed through the  time gate. After  t he  s igna l  
w a s  f i l t e r e d  t o  remove minor f luc tua t ions  i n  t h e  i n t e g r a t o r  output, the  r e s u l t -  
ing de voltage was recorded on an oscil lograph. Changes i n  the  recorded de vol- 
tages  were proport ional  t o  changes i n  the  amount of u l t r a son ic  energy received. 
Sens i t i v i ty  could be increased by proper adjustments of t h e  amplif ier  and t h e  
in t eg ra to r  c i r cu i t ry .  

Output voltage as a funct ion of f l a w  or ien ta t ion .  - Fatigue cracks may be 
e i t h e r  i n  a pos i t i on  normal t o  t h e  d i r ec t ion  of propagation of t he  u l t r a son ic  
waves or .at some angle to them. 
macroscopic crack o r i en ta t ion  on the  amplitude of u l t r a son ic  waves received by 
the  transducer when t h e  r e f l e c t i o n  technique w a s  employed. 

An attempt was made t o  determine the  e f f e c t  of 

S lo t s  0.05 inch i n  length  were machined through a 0.060-inch-thick alumi- 
num a l loy  p l a t e  t o  simulate crack surfaces a t  various angles t o  the  u l t rasonic  
waves. These s l o t  configurat ions and the  corresponding normalized output vol- 
tages  are shown i n  table 11. 
t a ined  equal with respect  t o  the  d i r ec t ion  of wave propagation. The angle be- 
tween the  s l o t  and a plane normal t o  the  p l a t e  i s  designated as cp f o r  uni- 
planar s l o t s  and as cp' f o r  b ip lanar  s lo t s .  The angle between the  s l o t  and a 
plane normal t o  the  edge of t h e  p l a t e  i s  designated as a. 

The projected a rea  of each configuration w a s  main- 

The output from each s l o t  shown i n  t h e  table i s  r e l a t i v e  t o  the  output 
from a s l o t  ly ing  normal t o  the  d i r ec t ion  of t he  u l t r a son ic  waves. 
t ransducer- to-s lot  dis tance w a s  s e t  a t  0.25 inch for a l l  t e s t s  (see f i g .  3 ( a ) ) .  
The arrows i n  t h e  f l a w  o r i en ta t ion  sketches ind ica t e  the  propagation d i r ec t ion  
of t he  u l t rasonic  pulses.  The amplitude of t he  r e f l e c t e d  wave decreased as the  
or ien ta t ion  of t he  s l o t  var ied  from a pos i t i on  normal t o  the  u l t rasonic  wave 
( t a b l e  11). The output f o r  va r i a t ions  i n  cp and cp '  can be approximated by 
the  cosine funct ion for t h e  given angle. The decrease i n  output with an in -  
crease i n  a 
increase i n  cp. 
of 

The 

i s  much more pronounced than the  decrease t h a t  occurs with an 
This pronounced decrease might be expected because a value 

a of 45O would r e f l e c t  id-trasonic energy i n  a d i r ec t ion  p a r a l l e l  to t h e  
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LABLE 11. - O T J "  VOLTAGE AS FUNCTION OF FLAW ORIENTATION 

F l a w  

a = 00 

a = 00 

/I 
%I-- 

cp = 00 

- 

Orienta t ion  
angle ,  
&e@; 

cp 

0 

10 

30 

45 

I ..- 

cp '  

0 

30 

45 

- 

a 

0 

10 

30 

45 

Normalized 
output 

vo l t age  

1.00 

.96 

.96 

.74 

1.00 

.81 

.75 

1 .00  

.92 

.30 

. 00 
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transducer face and would theore t ica l ly  r e s u l t  i n  zero output. 

The r e s u l t s  obtained with s l o t s  of predetermined or ientat ion can be ap- 
p l ied  t o  explain differences i n  ul t rasonic  re f lec t ion  from fat igue cracks whose 
surfaces l i e  a t  different  angles with respect t o  the direct ion of ul t rasonic  
waves. Thus, a crack t h a t  l i e s  on the  macroscopic shear plane of a specimen 
would not appear as large as one lying normal t o  the specimen surface when the 
direct ion of the  ul t rasonic  waves i s  p a r a l l e l  t o  the specimen axis. 

Because the use of the  through-transmission technique depends primarily on 
a blocking of the transmitted waves by the projected area of a crack, the tech- 
nique i s  r e l a t ive ly  independent of crack or ientat ion.  Consequently, the e f f ec t  
of crack or ientat ion on output voltage w a s  not invest igated f o r  t h i s  technique. 

MAIERIALS AND FATIGUE TEST PROCEDURE 

Specimen Materials 

Five materials were t e s t ed  i n  ax ia l  t e n s i l e  fatigue: unalloyed aluminum, 
two aluminum al loys (6061-T6 and 2014-T6), mild s t e e l  (approx 0.035 percent 
carbon), and Inconel. These materials represent three classes  of widely used 
metals of d i f fe ren t  dens i t ies  and attenuation character is t ics .  The t e n s i l e  
strengths of notched specimens a re  l i s t e d  i n  t ab le  111. Sheet specimens were 
employed, with thicknesses ranging from 0.046 inch f o r  Inconel t o  0.064 inch 
f o r  unalloyed aluminum. A sketch of the  t e s t  specimens i s  shown i n  f igure 5. 
Center-notched specimens were used so tha t  eccentr ic  loading would be reduced 
a f t e r  cracks were formed and, also, so tha t  the  cracks would appear i n  a region 
of the  specimen positioned i n  l i n e  with tha t  par t  of the piezoelectr ic  c rys t a l  
having the most sens i t ive  character is t ics .  

TABLE 111. - NOTCHED ULTIMATE 

TENSILE STRFNGTHS OF MATERIALS 

UTILIZED IN THIS INVESTIGATION 

[Notch r o o t  radius,  <0.0007 i n .  1 

Material 

1100 Aluminum 

6061-T6 

2014-T6 

Mild s teel  

Inconel  

Tens i le  s t rength,  
p s i  

1 2  000 

48 000 

57 700 

50 900 

67 200 

Max. rad., 0.0007J “-Diam., 1,13 

Figure 5. - Notched-sheet fatigue specimen. (Dimensions are in  
inches. ) 
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Fatigue Tes ts  

Test __ -~ conditions. - Specimens of a l l  f i v e  mater ia l s  were subjected t o  axial 
t e n s i l e  loads t h a t  were a l t e r n a t e l y  increased and decreased i n  a s inusoida l  pat-  
t e rn .  The frequency w a s  e i t h e r  1 6  o r  1970 cycles per minute depending on t h e  
expected specimen cyc l i c  l i fe .  The r a t i o  of minimum s t r e s s  t o  maximum s t r e s s  
w a s  maintained a t  0.14 f o r  a l l  t h e  mater ia l s  investigated.  A l l  t e s t s  were con- 
ducted a t  ambient temperatures i n  air .  A t  l e a s t  t h r e e  specimens were t e s t e d  a t  
each stress l e v e l  t o  obta in  da ta  f o r  t h e  inc l ined  por t ion  of t he  S-N curves 
representing cyc l i c  l i f e  t o  i n i t i a l  de tec tab le  cracks. S-N curves ind ica t ing  
l i f e  t o  f r a c t u r e  were a l s o  obtained f o r  a l l  of t h e  materials.  For 2014-T6 
aluminum, an intermediate S-N curve w a s  obtained t h a t  i nd ica t e s  t h e  number of 
cycles t o  form cracks having an average length of 0.077 inch. 

Fatigue t e s t s  were conducted i n  an axial  t e n s i l e  f a t igue  machine. The 
method of operation i s  described i n  reference 12.  Briefly,  mean t e n s i l e  loads  
were applied by a hydraulic piston, which a l s o  compensated f o r  specimen elonga- 
t i o n  during t e s t .  
cam-operated l e v e r  a r m .  A load c e l l  mounted i n  s e r i e s  with t h e  specimen was 
used t o  monitor t he  cyc l i c  load  during t e s t .  

Sinusoidal a l t e r n a t i n g  loads were applied by a ca l ibra ted ,  

Application of u l t r a son ic  de tec t ion  device t o  f a t igue  t e s t s .  - The ~ - -  __ .. 
u l t r a son ic - r e f l ec t ion  technique was u t i l i z e d  t o  de t ec t  cracks l e s s  than 0.005 
inch i n  length i n  a l l  t h e  mater ia l s  t e s t ed .  When t h i s  technique was used, t he  
transducer w a s  posit ioned on t h e  specimen 0.25 inch from the  specimen notch. 
The transducer was attached t o  t h e  specimen with C-type clamps (see  f i g .  2, 
p. 4) arranged so  t h a t  they d id  not i n t e r f e r e  with t h e  passage of u l t r a son ic  
waves through t h e  specimen. The r e f l e c t i o n s  from t h e  center of t h e  notch were 
damped i n  pa r t  by t h e  appl ica t ion  of adhesive tape  t o  t h e  r e f l e c t i n g  surface of 
t h e  notch. The ampl i f ie r  suppression (dc b i a s )  w a s  then adjusted t o  reduce t h e  
remaining notch s igna l  t o  a l o w  output l e v e l  which was used as t h e  zero l e v e l  
f o r  crack detection. Changes i n  the  recorded output ind ica ted  f a t igue  cracking 
a t  t h e  notches. The specimens made from the  s o f t e r  mater ia l s  were run f o r  
10 cycles or l e s s  before the  zero adjustment was made. This w a s  done because, 
a t  t h e  higher s t resses ,  t h e  notch w a s  deformed to varying degrees i n  t h e  f i r s t  
few cycles, which caused an instrument zero s h i f t  before cracking occurred. 

The through-transmission technique required the  posit ioning of a receiving 
transducer on t h e  s ide  of t he  notch opposite t h e  t ransmi t t ing  transducer. I n  
t h i s  case, ampl i f ie r  ga in  and suppression were ad jus ted  t o  provide a f u l l - s c a l e  
s igna l  of t h e  received energy p r i o r  t o  s t r e s s  cycling. A decrease i n  t h e  sig- 
n a l  w a s  i nd ica t ive  of t h e  presence of a crack. 

Crack-length measurement. - Upon f i rs t  de tec t ion  of a crack, some speci-  
mens were removed from t h e  f a t igue  machine and sectioned f o r  microscopic exam- 
ination. Af te r  sectioning, t h e  specimen surface w a s  ground (usua l ly  u n t i l  one- 
ha l f  t h e  specimen thickness remained), polished, and etched t o  b e t t e r  def ine  
t h e  crack. The image of t he  a rea  containing t h e  crack w a s  projected on a metal- 
lograph screen a t  a magnification of 500, and t h e  length  of t h e  crack image was 
measured t o  the  neares t  O.Ol.0 inch (crack-length v a r i a t i o n  of 0.00002 i n . ) .  
Variation of crack length  within an ind iv idua l  specimen was determined by 
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pol i sh ing  representa t ive  samples t o  various depths and repeat ing crack-length 
measurements. 

Specimens with longer  cracks (approx 0.07 i n . )  were f i r s t  broken i n  ten-  
sion, and t h e  fatigue-cracked por t ion  of t he  f r a c t u r e  surface was then measured 
d i r e c t l y  with a r u l e r  a t  a magnification of 10. I n  some instances,  surface 
crack length was observed a t  magnifications of 40 and 100 during t e s t  by means 
of a microscope mounted on the  f a t i g u e  machine. I n  t h i s  way progressive crack 
lengths  determined from t h e  same specimen could be p l o t t e d  against  u l t r a son ic  
response . 

A s  described previously, t he  amplitude of t h e  received s igna l  i s  dependent 
The in-  on the  i n t e n s i t y  of t h e  u l t r a son ic  waves as we l l  as on t h e  crack area.  

t e n s i t y  of t he  u l t r a son ic  waves passing through a un i t  a r e a  of the  specimen 
cross sect ion is ,  i n  turn,  inverse ly  proport ional  t o  t h e  specimen thickness.  
Since the  crack a rea  f o r  a given crack length i s  proport ional  t o  specimen th ick-  
ness, t he  received s igna l  f o r  shear waves i s  the re fo re  a funct ion of t he  crack 
length, independent of specimen thickness.  Consequently, descr ip t ion  of f a t igue  
cracks was made i n  terms of length  and provided a standardized comparison f o r  
a l l  t he  mater ia ls  invest igated.  

FATIGUE REXJLTS 

The S-N curves showing cyc l i c  l i f e  t o  i n i t i a l  de tec tab le  f a t igue  cracks 
and cyc l i c  l i f e  t o  f r a c t u r e  a re  shown i n  f igu re  6. Individual  data poin ts  show- 
ing  measured crack lengths  a r e  l i s t e d  i n  t a b l e  IV .  

Data Obtained With Reflect ion Technique 

The r e f l e c t i o n  technique w a s  found t o  be most s ens i t i ve  t o  the  i n i t i a l  de- 
t e c t i o n  of fa t igue  cracks, and a l l  of t he  i n i t i a l  crack de tec t ion  data were ob- 
t a ined  i n  t h i s  manner. Crack lengths  as shown i n  t h e  f igu re  and l i s % e d  i n  
t a b l e  I V  represent  t h e  SM of the  length  of cracks emanating from both ends of 
t he  specimen center  notch. The length  of f i r s t  de tec tab le  cracks i n  1100 alumi- 
num, mild s t ee l ,  and Inconel, ranged approximately from 0.0005 t o  0.005 inch 
( f i g s .  6 (a) ,  (a), and ( e ) ) .  I n  6061-T6 and 2014-T6 aluminum al loys,  t he  length  
of the  f i r s t  detectable  cracks was somewhat l e s s ,  ranging approximately from 
0.0005 t o  0.0025 inch ( f i g s .  6 (b )  and ( e ) ) .  For t h e  s m a l l  i n i t i a l l y  detected 
cracks ( a l l  l e s s  than 0.005 i n . ) ,  crack-length v a r i a t i o n  with thickness  within 
an ind iv idua l  specimen was determined, for representa t ive  specimens of a l l  mate- 
r ia l s  tes ted,  by measuring crack length  a t  t h ree  pos i t i ons  along the  thickness  
dimension. The maximum v a r i a t i o n  of crack length  with thickness  w a s  found t o  
be approximately 0.001 inch. Figure 7 shows photomicrographs of both notch 
roo t s  of a representa t ive  2014-T6 specimen a f t e r  successively grinding away 27, 
50, and 82 percent of t h e  specimen thickness.  The va r i a t ion  i n  crack length i n  
t h i s  case was only 0.0003 inch. 

It has long been known t h a t  f a t igue  cracks can e x i s t  i n  mater ia l s  without 
f a i l u r e  occurring within a span of cyc l i c  l i f e  t h a t  can, f o r  a l l . p r a c t i c a 1  
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.0005 to 0.0042 in. 0 Cycles to initial detect- 
able cracks 

A Cycles to fracture 
0 Cycles to obtain inter- 

Arrows denote that sDecimen did 
mediate crack lengths 

not fracture. 
+rack length, 21 1 IIII I , 1 1 1  I I Ill I I I l l  I I 1 1 1  I I Id I , o . ~ 4 t o  

(a) 1100 Aluminum. 

40~103 

0.0025 in. 
E 
2 10 
c 
v) 

(c) 2014-T6 Aluminum. 
1.111 I I I I I  I I111 I I l l1 I I I I I  I I111 

u 

Ib) 6061-T6 Aluminum. 5 0  
E .- 
Y 

t 10 

r Crack length, 
0.0011 to 0.0050 in. 

O b  '04 

0.0047 in. 1' ob, 
A- 

Cycles 

(d) Mi ld steel. (e) Inconel. 

Figure 6. - Stress-life (S-N) curves showing cycles to first detectable cracks and cycles to fracture for center-notched sheet 
specimens. Ratio of minimum to maximum stress, 0.14. 

purposes, be considered i n f i n i t e .  It i s  i n t e r e s t i n g  t o  note t h a t  evidence of 
such cracks w a s  obtained with t h e  u l t r a son ic  crack-detection device f o r  2014-T6 
aluminum i n  t h i s  i nves t iga t ion  ( f i g .  6 ( c ) ) .  
specimens t e s t e d  a t  a m a x i m u m  cyc l i c  stress of 7650 pounds per  square inch. 
Two specimens were removed from the  f a t igue  machine a t  t h e  time of crack detec- 
t ion; t h e  t h i r d  w a s  run t o  lo7 cycles before the  t e s t  w a s  terminated. Figure 8 
shows a comparison between t h e  cracks i n  one of t h e  specimens t h a t  w a s  removed 
from t e s t  a f t e r  de tec t ion  of t h e  i n i t i a l  crack and i n  t h e  specimen t e s t e d  for 
l o7  cycles. 

Cracks were de tec ted  i n  th ree  

Crack lengths  i n  both ins tances  a re  v i r t u a l l y  t h e  same. 

Data Obtained With Through-Transmission Technique 

The through-transmission technique w a s  u t i l i z e d  wi th  t h e  u l t r a son ic  crack- 
de t ec t ion  device t o  ind ica t e  t h e  presence of cracks having a length g r e a t e r  
than 0.010 inch i n  2014-T6 aluminum. The S-N curve represent ing  t h e  number of 
cycles u n t i l  cracks of approximately 0.062 t o  0.082 inch i n  length  were formed 
i s  shown i n  f i g u r e  6 (c ) .  Ind iv idua l  data po in t s  f o r  th i s  curve a re  given i n  
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TABLE IV. - SUMMARY OF CRACK-DETECTION DATA 

( a )  1100 Aluminum. 

Average crack length ,  0.0023 inch .  

(b) 6061-T6 Aluminum a l l o y .  

Average crack length ,  0.0012 inch. 

Maximum Length of 
c y c l i c  i n i t i a l  d e t e c t a b l e  1 st;;;s,l crack, i n .  

Maximum] Lenath of I Cvcles t o  Percent 
,f average 
l i f e  t o  
f r a c t u r e  

i n i t i i l  d e t e c t a b l e  
s t r e s s ,  crack, crack 

I 

Average S ingle  t e s  *- I Average 

' }  29 

] 40 

S i n g l e  t e s  

.0017 

Average 

0.0017 

0.0021 

i n g l e  t e s  

1200 
1200 
1900 
2600 
3500 

.0008 

.0014 

.0028 

.0032 

.0017 

.0022 
,0037 

m..p 59 
26 250 0.0005 . 0012 

.0014 

-061 m7qL 183 
17 500 0.0005 

.0009 . 0010 

0.0029 

0.0024 

t 8 750 1 0.0010 . 0012 
.0017 
.0033 
.0032 
.0035 ZTZl ,0014 ' 

2700 
6000 
8900 

_ _ _ _ _ _  I 

( c )  2014-T6 Aluminum a l l o y .  

Average length  of f i r s t  d e t e c t a b l e  crack, 0.0011 inch; average l e n g t h  of i n t e r n e d i a t e  crack, 0.077 inch .  

(d)  Mild s t e e l .  ( e )  Inconel .  

Average crack length ,  0.0025 inch .  Average crack length ,  0.0026 inch .  
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Figure 7. - Photomicrographs of M14-T6 aluminum alloy showing variation of crack length 
wi th specimen thickness. (Only notch tips are shown.) X500. 
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(a) Test stopped at f i rst indication of crack, 4.9X104 cycles. 

(b) Test continued aRer f irst indication of crack to 1.7X107 cycles. 

Figure 8. - 2014-T6 Aluminum alloy specimens tested at stress near endurance limit. 
(Only notch tips are shown.) X500. 
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t ab l e  IV(c). 
i b i l i t y  of the  instrument output for cracks much l a rge r  than those which were 
detected with the  r e f l ec t ion  technique. 

These data  were taken t o  obtain an indicat ion of the  reproduc- 

A fu l l - sca le  s ignal  change on the oscillograph w a s  indicat ive of crack 
lengths ranging between 0.062 to 0.082 inch with the exception of one specimen 
i n  which the length of the  crack w a s  found t o  be 0.104 inch. I n  t h i s  instance, 
coupling changes may have affected the  resu l t s .  Except f o r  t h i s  s ingle  case 
the  r e su l t s  were f a i r l y  reproducible. The l a t t e r  point i s  not p lo t ted  i n  f ig -  
ure 6(c) .  Reported crack lengths represent t he  average of a se r i e s  of measure- 
ments made a t  f i v e  posi t ions through the thickness of each specimen. Consider- 
ably greater  var ia t ion  i n  crack length with specimen thickness occurred for 
these longer cracks than occurred f o r  the much shorter  cracks detected by the  
re f lec t ion  technique. Crack length i n  any given specimen var ied as much as 
0.035 inch with the  longest portion usually located about midway between the  
surfaces. These data. indicate  t h a t .  the  through-transmission technique i s  ap- 
parently sui table  f o r  measuring r e l a t ive ly  long fat igue cracks tha t  can occur 
r e l a t ive ly  l a t e  i n  specimen l i f e .  

DISCUSSION 

Certain aspects of the  operation of t h i s  crack-detection system, including 
operational l imi ta t ions  and the  general appl icabi l i ty  of the system, are dis- 
cussed i n  the subsequent sections. 

Character is t ics  of Fatigue Crack-Detection Device 

Considerations per t inent  t o  L n i t i a l  crack detection. - Detection of cracks 
by ul t rasonic  techniques i s  normally l imited t o  those cracks t h a t  present a re- 
f l ec t ing  area with dimensions greater  than one-half the ul t rasonic  wavelength. 
The wavelength of the  ul t rasonic  waves generated i n  t h i s  system w a s  approxi- 
mately 0.026 inch; however, cracks as s m a l l  as 0.0005 inch were detected be- 
cause of the  manner i n  which the  crack-detection system w a s  applied. 

~ l ~ _ c _ . -  - -  

With the employment of notched specimens a high-amplitude s ignal  w a s  ob- 
ta ined from the  notch. This s ignal  was much la rger  than those a r i s ing  from 
other sources such as grain boundaries, which could otherwise confuse in t e r -  
pretat ion of the  signals.  Since the  crack propagates from the notch roots, the 
c lear ly  distinguishable notch s ignal  w i l l  increase further,  thus making it pos- 
s ib le  t o  detect  minute cracks by monitoring the large signal. If no reference 
indicat ion (e.  g., re f lec t ion  from the notch) were available, the  shortest  de- 
tec tab le  crack probably would have been 0.013 inch or greater.  

It was determined from several  preliminary t e s t s  t h a t  a recorded voltage 
increase i n  the  notch s ignal  of about 10 percent of f u l l  scale  was needed t o  
ensure t h a t  the  instrument had detected a crack. Resolution of the  recorded 
voltage w a s  t o  within 2 percent of f u l l  scale. A voltage l eve l  of about 10 per- 
cent of f u l l  scale  w a s  therefore chosen t o  allow f o r  possible experimental e r -  
rors caused by such things as minor e lectronic  f luctuat ions,  s l i gh t  var ia t ions 
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Specimen 

TABLE V. - CRACK-MEASURFMENT DATA FOR 

6061-T6 ALUMINUM FOR VOLTAGE OUTPUTS 

O F  5.5 AND 11 PERCENT O F  FULL SCALE 

Crack length, 
in. 
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.0014 
.0014 
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.0019 
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.0012 

PI" 
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O E  

0 2 4 6 8 10x10-' 

Crack length, in. 
Figure 9. - Crack-detection characterist ics for M14-T6 

aluminum. 

i n  c r i t i c a l  pos i t ion ing  of t h e  transducer on 
t h e  specimen, s l i g h t  d i f fe rences  i n  crack o r i -  
entation, and changes i n  coupling e f f i c i ency  
during the  t e s t .  O f  t hese  sources of possible 
e r ror ,  t he  changes i n  coupling e f f i c i ency  prob- 
ably had the  g r e a t e s t  e f f e c t  on t h e  reproduc- 
i b i l i t y  of crack-detection data. 
transducer w a s  mounted on a s t r e s sed  a rea  of 
t h e  specimen, t he re  w a s  some r e l a t i v e  motion 
between t h e  transducer and t h e  specimen. This 
motion could have caused changes i n  t h e  a b i l i t y  
of t h e  f l u i d  coupling (molybdenum disulphide) 
t o  t ransmi t  u l t r a son ic  waves. These changes 
could a c t  e i t h e r  t o  improve or de te r io ra t e  t he  

Since the  

coupling e f f ic iency .  For example, i f  t h e  cou- 
) l i ng  e f f ic iency  were improved before a crack formed, t h e  instrument might give 

an ind ica t ion  of crack formation because the  r e f l e c t e d  s igna l  from t h e  notch 
would be increased; conversely, i f  t h e  coupling e f f i c i ency  de ter iora ted ,  i nd i -  
ca t ion  of a crack might be delayed. I n  general, changes i n  coupling e f f i c i ency  

Relation between output voltage and crack length  wi th  r e f l e c t i o n  tech- 
nique. - The r e l a t i o n  between output voltage and crack length  w a s  inves t iga ted  
f o r  two of t h e  materials:  6061-T6 and 2014-T6 aluminum. Table V shows crack- 
de tec t ion  da ta  f o r  specimens of 6061-T6 aluminum a l l o y  examined a f t e r  i n s t ru -  
ment outputs of 5.5 and 11 percent of f u l l  sca le  had been obtained. The aver- 
age crack length  f o r  t h e  lower output voltage w a s  0.0012 inch, while f o r  t h e  
higher output it w a s  0.0029 inch. Thus, it i s  evident t h a t  t h e  output voltage 
was d i r e c t l y  r e l a t e d  t o  crack length. 
t h e  average crack length, however, i s  g rea t e r  f o r  t h e  lower voltage output than 
f o r  t h e  higher voltage output. 

The spread i n  crack length r e l a t i v e  t o  

I 

The r e l a t i o n  between instrument output and crack length  was f u r t h e r  ex- 
Figure 9 shows a p l o t  of crack length aga ins t  plored with 2014-T6 aluminum. 
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output voltage for t h i s  mater ia l .  The crack lengths  were measured on t h e  spec- 
imen surface with a microscope a t  a magnification of 100 while t he  t e s t  speci-  
men w a s  under load  i n  t h e  f a t igue  machine. The da ta  poin ts  were taken from 
f i v e  specimens fa t igued  a t  d i f f e ren t  stress leve ls .  The output w a s  l i n e a r  with 
respec t  t o  crack length  over t he  fu l l  sca le  of t he  oscil lograph. The devia t ion  
from the  curve, referenced t o  ful l  scale  (0.008 i n . ) ,  i s  about +25 percent. 

For crack lengths  g r e a t e r  than 0,010 inch t h e  r e l a t i o n  between output vol-  
t age  and crack length  was no longer l inear ,  and s c a t t e r  increased markedly; 
therefore,  ca l ib ra t ion  of t he  instrument f o r  longer crack lengths  with t h e  r e -  
f l e c t i o n  technique w a s  not possible.  The da ta  of f igu re  9, however, i nd ica t e  
t h a t  t he  instrument has a t  l e a s t  a l imi ted  capab i l i t y  f o r  specifying crack 
length  as wel l  as de tec t ing  t h e  presence of s m a l l  f a t i gue  cracks. 

gcfec t  of cyc l i c  s t r e s s  on s e n s i t i v i t y  t o  presence of s m a l l  cracks. - Re- 
sponses from the  load  c e l l  mountgd i n  s e r i e s  wi th  the  specimen were recorded 
simultaneously with u l t r a son ic  output voltage. The presence of a crack could 
be noted e a r l i e r  i n  cyc l i c  l i f e  i f  measurements were taken while t h e  specimen 
w a s  subjected t o  the  maximum cycl ic  s t r e s s  than while it w a s  subjected t o  t h e  
minimum cycl ic  stress because the  adjacent m e t a l  surfaces  created by a s m a l l  
crack a re  pul led apa r t  t o  a g rea t e r  degree a t  maximum load than a t  any o ther  
t e n s i l e  load. 
high loads; whereas, they would tend t o  be t ransmi t ted  across  the  crack i n t e r -  
face  at  low loads. I n  view of t h i s ,  it appears t h a t  output voltage readings 
should always coincide w i t h  t he  applied cyc l i c  s t r e s s  a t  which the  crack sur- 
faces  a re  most widely separated i n  order f o r  t h i s  instrument t o  be operated i n  
the  most e f f i c i e n t  manner possible  f o r  t he  de tec t ion  of s m a l l  cracks. 

Consequently, u l t rasonic  waves would tend t o  be r e f l ec t ed  a t  

General Observations 

The f a t igue  da ta  show tha t ,  i n  the  sharply notched specimens u t i l i zed ,  
cracks were detected within 1 to, 3 percent of t he  t o t a l  l i f e  to f r a c t u r e  f o r  a l l  
mater ia l s  t e s t e d  over t he  range of s t r e s s e s  considered. Although t h e  materials 
var ied widely i n  mechanical propert ies ,  it w a s  nevertheless  possible  t o  de t ec t  
cracks with t h i s  device a t  a very s m a l l  f r a c t i o n  of t he  t o t a l  l i f e  t o  f r ac tu re .  
It should be noted t h a t ,  although approximately the  same f r a c t i o n  of t o t a l  l i f e  
t o  f r ac tu re  w a s  used i n  forming the  f irst  de tec tab le  cracks i n  a l l  t he  mater ia l s  
invest igated,  t he  a c t u a l  number of cycles  required t o  form such cracks va r i ed  
considerably from mater ia l  t o  mater ia l .  This i s  evident from t a b l e  N (p .  14) .  

In  order t o  determine whether t he  u l t r a son ic  t e s t i n g  apparatus had a dele-  
t e r ious  e f f e c t  on f a t i g u e  behavior, specimens of mild s t e e l  and 2014-T6 aluminum 
were f a t igue  t e s t e d  t o  f a i l u r e  without t he  t ransducer  attached. Fatigue l i f e  
w a s  e s s e n t i a l l y  i d e n t i c a l  wi th  t h a t  obtained f o r  s imi l a r ly  s t ressed  specimens 
subjected t o  simultaneous u l t rasonic  pulses  and f a t igue  t e s t ing .  Thus, t h e  e f -  
f e c t s  of t he  add i t iona l  m a s s  associated with the  t ransducer  and clamp, the  pres- 
ence of molybdenum disulphide on a port ion of t h e  specimen surface, and t h e  
acous t ica l  energy assoc ia ted  with u l t rasonic  t e s t i n g  d id  not adversely a f f e c t  
f a t igue  l i f e .  
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Although t h e  u l t r a son ic  system f o r  de tec t ing  f a t igue  cracks developed i n  
t h i s  inves t iga t ion  i s  intended primarily f o r  use as a research  tool,  t h e  r e -  
sults ind ica te  t h a t  it may a l s o  have appl ica t ions  f o r  f a t i g u e  crack de tec t ion  
i n  t h e  f i e l d .  For example, t h e  notched specimen employed i n  t h i s  study may be 
considered analogous t o  c r i t i c a l l y  s t r e s sed  a i rp l ane  components containing 
stress r i s e r s .  
a i rp lane  i s  being subjected t o  an t i c ipa t ed  f a t i g u e  loads on the  ground, sub- 
s t a n t i a l  savings i n  time might be achieved over cumbersome v i sua l  inspec t ion  
techniques. Similarly, appl ica t ion  of t h e  device t o  known c r i t i c a l l y  s t r e s sed  
sec t ions  of an a i r c r a f t  a f t e r  spec i f ied  periods of f l i g h t  time might i nd ica t e  
t h e  presence of minute cracks e a r l y  enough t o  allow time f o r  remedial measures 
t o  be taken. Fur ther  research i s  of course needed t o  make t h i s  u l t r a son ic  
crack-detection system su i t ab le  f o r  such p r a c t i c a l  applications.  

By de tec t ing  s m a l l  f l a w s  i n  such components while a prototype 

SUMMARY OF RESULTS 

An u l t r a son ic  system was developed and used t o  de t ec t  and measure minute 
f a t igue  cracks i n  center-notched sheet specimens of unalloyed aluminum, two 
aluminum alloys,  a mild s t e e l ,  and a nickel-base a l loy .  Both r e f l e c t i o n  and 
through-transmission techniques were employed. Actual lengths  of detected 
cracks were determined by metallographic examination. S t r e s s - l i f e  (S-N) curves 
of l i f e  t o  i n i t i a l  de tec tab le  crack as wel l  as l i f e  t o  f r a c t u r e  were obtained. 

1. With t h e  r e f l e c t i o n  technique, f a t igue  cracks t h a t  ranged approximately 
from 0.0005 t o  0.005 inch i n  length  were detected during f a t igue  t e s t i n g  of t h e  
more duc t i l e  mater ia l s  ( i . e . ,  pure aluminum, mild s t ee l ,  and Inconel) and 
cracks ranging approximately from 0.0005 t o  0.0025 inch i n  length were detected 
i n  the  l e s s  duc t i l e  mater ia l s  (6061-T6 and 2014-T6 aluminum a l l o y s ) .  

2. I n  t h e  sharply notched specimens u t i l i z e d  i n  t h i s  investigation, cracks 
were detected within approximately 1 to 3 percent of t o t a l  specimen l i f e ,  f o r  
a l l  of the  mater ia l s  considered, over t h e  range of s t r e s s e s  considered. 

3. The r e f l e c t i o n  technique was more sens i t i ve  t o  t h e  de tec t ion  of minute 
f a t igue  cracks than t h e  through-transmission technique. Thus, it was possible 
t o  de tec t  much smaller cracks with t h e  r e f l e c t i o n  technique. 

4. The through-transmission technique gave cons i s t en t ly  reproducible out- 
put voltages f o r  cracks on t h e  order of 0.062 t o  0.082 inch i n  2014-T6 aluminum. 
This reproducib i l i ty  w a s  b e t t e r  than t h a t  obtained with t h e  r e f l e c t i o n  tech- 
nique for s imi l a r ly  long cracks. 
pears t o  be b e t t e r  su i t ed  f o r  measuring the  length  of cracks g rea t e r  than about 
0.010 inch. 

The through-transmission technique thus  ap- 

5. The e f f e c t s  of crack o r i en ta t ion  on output voltage with the  r e f l e c t i o n  
technique was studied by means of s l o t s  machined i n t o  f l a t  p la tes .  S lo t  sur- 
faces  normal t o  t h e  d i r ec t ion  of t he  u l t rasonic  waves produced the  g rea t e s t  out- 
put voltage. The f u r t h e r  t h e  s l o t  surface deviated from a pos i t ion  normal t o  
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t he  wave propagation direct ion,  t he  smaller t h e  output became, 
s l o t  surface area when projected on a plane normal t o  the wave 

even though the 
was constant. 
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